Updating Results

Master of Engineering (Electrical Systems)

  • Masters (Coursework)

The Online Master of Engineering (Electrical Systems), developed by electrical and renewable energy experts, will equip you with the necessary skills and knowledge to address the demands of the modern power industry.

Key details

Degree Type
Masters (Coursework)
Duration
24 months full-time
Course Code
MEE
Study Mode
Online
Intake Months
Jun

About this course

The Online Master of Engineering (Electrical Systems), developed by electrical and renewable energy experts, will equip you with the necessary skills and knowledge to address the demands of the modern power industry. You will learn how to design the components of a power system including generation, transmission, distribution and the associated systems. The program will also cover the automation, protection and control components that contribute to the high level of reliability expected from modern power systems.

Not sure if this is the right course for you? Check out other Postgraduate Engineering Study Options at EIT.

Entry requirements

To gain entry into this program, we require applicants to hold:

  1. A recognized 3-year bachelor degree* in an engineering qualification in a congruent** field of practice; OR
  2. An EIT Bachelor of Science (Engineering) degree* in a congruent** field of practice; OR
  3. A 4-year Bachelor of Engineering qualification (or equivalent) that is recognized under the Washington Accord or by Engineers Australia, in a congruent**, or a different field of practice at the discretion of the Admissions Committee; OR
  4. A 4-year Bachelor of Engineering qualification (or equivalent)* that is not recognized under the Washington Accord, in a congruent** field of practice to this program; AND
  5. An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.0 (with no individual band less than 6.0***), or equivalent as outlined in the EIT Admissions Policy.

* With integrated compulsory twelve-week professional industry experience, training or project work of which six weeks are directly supervised by a professional/eligible professional engineer as determined by EIT.

** Congruent field of practice means one of the following with adequate Electrical Engineering content (fields not listed below to be considered by the Dean and the Admissions Committee on a case-by-case basis):

  • Electrical Engineering
  • Electrical Power Engineering
  • Electronic and Communication System
  • Industrial Engineering
  • Instrumentation, Control, and Automation
  • Mechatronic Systems
  • Manufacturing and Management Systems
  • Industrial Automation
  • Production Engineering
  • Renewable Systems and Signal Processing

***Applicants may have a maximum of one individual band of 5.5 and be granted entry subject to the provision of English language support by EIT.

Please note: meeting the minimum admission criteria does not guarantee entry to our programs. Applications are assessed on a case-by-case basis.

Please check the Documentation Guidelines for your application.

Study locations

Online

What you will learn

Graduates of this program will be able to:

  1. Demonstrate sound fundamental understanding of the scientific and engineering principles and apply underpinning natural, physical and engineering sciences, mathematics, statistics, computer and information sciences to solve problems in electrical systems engineering.
  2. Apply in-depth as well as broad understanding of the relevant specialist body of knowledge within the electrical systems engineering discipline including: fundamental power generation and power system design principles; evaluation power system safety and protection; assessing smart grids; power stability and operational analysis; substation automation and systematic project management.
  3. Reflect critically on a broad body of engineering knowledge to plan and execute an electrical systems engineering research based project, with awareness to knowledge development and research direction within the engineering discipline.
  4. Draw on the knowledge of engineering design practice and understand the scope, principles, norms, accountabilities and bounds of sustainable engineering practice in the electrical systems engineering discipline.
  5. Apply systematic approaches, design processes and established engineering methods, tools, techniques and resources, underpinned by hazard and risk framework considerations to conduct and manage electrical systems engineering projects.
  6. Communicate effectively technical ideas, design concepts or research results to a diverse audience.
  7. Ability to recognise and pro-actively engage in ongoing professional development and lifelong learning, as well as develop creative and innovative solutions to engineering problems.
  8. Demonstrate professional use and management of information.
  9. Apply discipline and professional knowledge and skills to demonstrate autonomy, adaptability and responsibility as a professional engineer.
  10. Ability to work as a member of a cross disciplinary team in a manner consistent with ethical and professional standards.

Master of Engineering (Electrical Systems) - Mapping of Program Learning Outcomes with Graduate Attributes and Engineers Australia Stage 1 Competencies for Professional Engineers.

Career pathways

Potential job roles include engineering and management positions in the following areas of expertise:

  • Electrical and electronics system design
  • Instrumentation, control systems & automation
  • Oil & gas
  • Systems engineering
  • Communication systems
  • Embedded systems
  • Mining
  • Manufacturing
  • Building
  • Electric vehicles
  • Power generation & distribution
  • Renewable and energy storage systems